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Abstract

A variational-vector calculus approach is employed to derive a recursive formulation
for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent
flexible bodies are derived in a companion paper [7], using a state vector notation that
represents translational and rotational components simultaneously. Cartesian generalized
coordinates are assigned for all body and joint reference frames, to explicitly formulate
deformation kinematics under small deformation assumptions. Relative coordinate kinematics
for joints are decoupled from deformation kinematics and an efficient flexible dynamics
recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to
illustrate efficiency of the algorithm.

1. Introduction

A recursive dynamics formulation was proposed by Armstrong [1] to analyze a robot
manipulator, beginning with Cartesian equations of motion in a joint reference frame.
Reaction forces were introduced as unknown forces into the equations of motion. These
unknown forces were then eliminated to obtain recursion formulas for calculation of reduced
equations of motion. The method was reformulated by Featherstone [2] and used to analyze a
robot arm that consists of revolute and/or translational joints. He used a spatial notation to
relieve notational complexity and introduced a new "articulated inertia" terminology that
reflects inertia effects of all outboard bodies in a kinematic chain. Neither method considered
the effect of flexibility of components.

Variational approaches have dominated structural analysis for the last decade. The
variational method has recently been combined with vector calculus, to permit systematical
transformation of the equations of motion from Cartesian space to joint coordinate space [3].
The same variational approach was used to derive a recursive formulation for constrained
rigid body mechanical system dynamics in Ref. 4.

A variational equation of motion for constrained flexible systems was derived in Ref. 5,
using Cartesian coordinates. The variational approach was applied to extend the rigid body
recursive formulation to flexible body systems by Kim [6]. Kinematic relationships between
reference frames for a pair of bodies that are connected by a joint are expressed in terms of
joint relative coordinates and modal deformation coordinates of bodies. As a result, joint and
modal coordinate equations of motion are coupled and must be solved simultaneously. This
requires inversion of a moderately large matrix, for coupled modal and joint coordinates.

In order to enhance graph theoretic analysis of deformation characteristics, kinematics
of flexible multibody systems is represented in a companion paper [7]. Based on this
kinematic analysis, a recursive formulation for dynamic analysis is represented in this paper
that decouples relative joint and deformation coordinates, to improve computational efficiency.
The proposed formulation can be used with a rigid body formulation by eliminating terms
related to modal coordinates, due to its decoupled treatment of gross motion and deformation.
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State vector representations and kinematics of flexible multibody systems, defined in
Refs. 8 and 7 respectively, are summarized in Section 2. The equation of motion for a flexible
body is transformed from the Cartesian space to a state space setting in Section 3. System
topology is defined in Section 4 and recursive equations of motion for a single closed loop
subsystem are derived in Section 5. Cut joint constraint acceleration equations that are needed
in the equations of motion are derived in Section 6. The base body equation of motion is defined
in Section 7. Numerical examples and results are presented in Section 8.

2. Decoupled Recursive Relationships for Flexible Bodies

To derive the variational equations of motion, state vector notation and decoupled
recursive relationships for adjacent reference frames [7, 8] are briefly reviewed here. A
matrix representation of the Cartesian velocity of a reference frame with origin at point P, as
shown in Fig. 1, is given as Y, = ['r; m‘T,]T, where },T) is the velocity of point P and w, is the
angular velocity of the x,- y,- z, body reference frame. A generalized velocity state vector \/.
based on screw and motor algebra [8, 9], is defined here as

q _ fp+ rp(op STY. =T fp
P L ® p'p ®
P p (2.1)
where the 6x6 nonsingular matrix T, is defined as
T |t p}
p
L0 | (2.2)
The tilde operator is used here to define a skew symmetric matrix as
0 -r,r
y

r=ir, 0 -1y

~fy fx 0 (2.3)
that is associated with a vector r = [r,.r,.1,]".
The Cartesian virtual displacement 8Z is defined as

52, E[Srp}
&, : (2.4)

where 8r, is virtual displacement of point P and 8, is virtual rotation of the X - Yp- 2, frame.

The state variation can be obtained by replacing i'p and @, by ér, and =, respectively, in Eq.
2.1; i.e.,

2 8ry + T8
SZps[ P P"P]:Tpszp

omy (2.5)

The acceleration state vector ?p is defined as the time derivative of velocity state 9p of
Eq. 2.1; i.e,,

Y, = |"'p + 'rp(bp + 'rpmp =T Y+ Xp
Wp (2.6)
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where )(p is the 6x1 vector

Xp = Fpp
0 (2.7)
The inverse relationships between Cartesian and state vector quantities can be derived from
Egs. 2.1, 2.5, and 2.6 as

_ 1y
Yo=To Yp (2.8)
-
8Z,=T,8Z, (2.9)
. 1:.
Yo=Tp Yp-X, (2.10)

where the 6x6 inverse matrix T,' of the matrix T, is simply

T;‘:[' —Fp}
0 I (2.11)

Three flexible bodies, with their body and joint reference frames, are shown in Fig. 2.

The x-y-z frame is the global reference frame, denoted as F. Two joint reference frames are

attached 1o a body i at each joint defi nmon pomt P The xll y ij-Z j frame, denoted as Fu'
flxed to body i and is parallel to the x y -z, frame, denoted asF, m the undeformed state The
X;j- yu z; frame, denoted as F,, is body flxed and has fixed orientation, relative to the F
frame, smce both are fixed to the body at the same joint definition point where the body |s
assumed to be very stiff.
Recursive relatnonshnps between reference frames in a joint, for example between the

Xi- ¥ii- 2; and x;- y;i- z;; frames of joint (i,j), are

V= ¥+ Mg, (2.12)
82; =82 + Sa (2.13)
V- ¥, i+ Gy + 8 (2.14)

where Y, Y and §Z are state representations of velocity, acceleration, and virtual

displacement, respectively, and q; is a vector of joint relative coordinates [7].

Recursive relationships between inboard and outboard joint reference frames of a
flexible body are

Yij= Yy + Tja;  (2.15)
8Z; = sz,+r,,5a, (2.186)
Yi] |I"'I‘ua + 4 o (2.17)

“where a is the deformation modal coordinate vector of the flex:ble body [5-7].
The recursive relationships between frames F and F, of a flexible body are
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Yij= Yi+ Aj@; (2.18)

8Z; = 8Z; + Aja, (2.19)
Y= Yi+ Aja + & (2.20)
Detailed expressions for matrices T, 4;, IT;, 8;, A, and E; may be found in Ref. 7.

3. Equation of Motion for a Flexible Body

The variational Cartesian equations of motion for a flexible multibody system are
derived in Ref. 5. They can be written for a typical body i, using the notations defined in
Section 2, as

[SZiT Sa;r]{ M; [Y'} +8j+ V- Qi} =0
3 (3.1)
which must hold for all kinematically admissible 5§Z; and 8a,. The mass matrix M;is a
function of the generalized coordinates, S, is a collection of quadratic velocity terms, V; is the
elastic generalized force, and Q is the applied generalized force.

The equations of motion in Cartesian space are transformed to state vector form by
substituting kinematic relationships between the spaces. The state variation and acceleration
relationships of Egs. 2.9 and 2.10 are substituted into Eq. 3.1, to yield

.
-
-

[s2] saT|{ i Yi|-Git =0
a; (32)

where the state representation I\')li of the mass matrix is partitioned into 4 submatrices, based
on state and modal coordinates,

- - T

g, <MW T 0} Mi[ﬁ1 0]
o 1 0 1 (3.3)

i =
g T2 a2 B
M{™ M,
Similarly, the state representation of éi, which accounts for generalized force and coupling
terms, is divided into two subvectors as

Q- :: E[T: ?:|T(Mi|::i:l_si—\l;+°i) o

The equations of motion in Eg. 3.2 can be rewritten, using the notations of Eqgs. 3.3 and 3.4, as

where SZ and 8a, must be consistent with all constraints that act on body i.

4, System Topology
An extended flexible multibody graph model, in which nodes represent reference
frames and edges represent transformations between frames, is presented in Ref. 7. The
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corresponding graph for a single closed loop system is shown in Fig. 3. Body /is the junction
body, at which chains 1 and 2 of the spanning tree of Fig. 4 meet. If joint J(n,n+1) between
bodies n and n+1 is cut, both bodies n and n+1 are treated as tree end bodies.

5. Equations of Motion of a Single Closed Loop
The variational equation of motion for the system shown in Fig. 3 is

m

D2 MY, + M™a, - QD + 3] MY, + MP5 - Q] = 0

i=/ (5.1)
which must hold for all kinematically admissible virtual displacements that satisfy joint and
deformation constraints in Fig. 3. -

State variation and accelerations of each body reference frame are expressed in
corresponding joint terms and modal coordinates from Egs. 2.19 and 2.20 and substituted into

Eqg. 5.1. The resulting equations of motion are as follows:

m o

2{82;2-—1)(Mimm?i(i—1) + M8 - Q) + 82 (M ™Vig_q) + M2, - Q™)
i=! -
=EQM(1) + EQM(2) =0 (5.2)

which must hold for all kinematically admissible virtual displacements. Terms arising in Eq.
5.2 are as follows: '

a a zma aalm
=M - MTAG,

g3  pyam T il T8
= M7= M A + Ay (M Ay~ M)

1
~Z MM
q=Q + M &)

Q,

~3a  Sram., T A2 mn‘;_. A
= Q7+ M7E ) - A @+ MTTE )

|
EQM() = D 1625y M™F, oy +M™5 0D+ 58 M7,y + M5, G)
i (5.4)
m , Ses B o )
EQM(@) = Z 18211y M ™,y tM8-GD)+ B3y (M] Y, 1)+MP3-GP)
i=n+1 (5.5)

The Jacobian matrix of the cut joint constraint function & ™™" is obtained by
differentiation as

5¢J(n,n+1) - q’i 82

+ ®; 82
n+1) ) Z(

n(n+1 netdn (n+1)n (5 .6)
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where state variations Sin(m,, and 82(n+1)n are obtained by employing the state vector

representation of Cartesian virtual displacements. There exists a Lagrange multiplier vector
such that
n

EQM@) + D 1621 (MMM
i=l

T,ea2My aa: ~a ~T n(n+1)
+ 8y (MY qytM;"a -G} + 82n(n+1)°;n(m”}" =0 (5.7)
where the virtual displacements need only be consistent with kinematic admissibility
conditions for all tree structure joints and deformation constraints. Similarly, the equation of
motion for chain 2 is

m

EQM(@) = ) (827, oM™V, +M" 50

i=n+1

T, 0 g@Mg aa: ,.a 5T T n{mn+1)
+ Bay (MY oyt M8} + 824,10 Pz A (5.8)
The virtual displacement 82,,,,,, may be expressed in terms of 8Z,,,.,, and 8ap, from
Eq. 2.16. Substituting this relationship into Eq. 5.7, to obtain

-1
EQM@)+ D 1628, (MM ™,y M25-Q0+ 82, (M, y+M5 G0}
i=/

T
n(n-1

mm, ma.. T n(re1).
)(Mn Yn(n—1)+Mn an'qu"d’z mn’" )

+ 862

T pg2Ms P T n(n+1)
+38a, (M, Yn(n—1)+M?\aan+rn(n+1)q§dm‘)7“ )=0 (5.9)
which must hold for all virtual displacements that are consistent with tree structure joints

and deformation constraints in Fig. 4. Since 8a,, is arbitrary, the coefficient of SaI in Eq. 5.9

must be zero. As a result, the following expression for a, is obtained:
: T
. z "y a c
a, =R yYnnnt Rot-n + Rn(n—1)x (5.10)
where

-1
z aa ggam
I:‘r'v(n—1) =-M, M.

-1
a aa
Ro-1= M, Qﬁ
T
c

1
aa T
Ron-="Mn Tnaen®2 (5.11)

Note that superscript n(n+1) for the Lagrange multiplier vector has been dropped, for
notational convenience. ,
Substituting the modal acceleration of body n from Eq. 5.10 into Eq. 5.9,
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n-1

EQM(2)+ 2{82IF1,(M{“'“?m_,,+Mi'"aéi4;z>+ sa (M2™Y,;_,+M>5_QP)

i=/

. T
5T y c
+ 82y Gty Vi1 Gt 15 Gty = 0 (5.12)
where

mm (131 P 4
Gy =My + MUPRY )

v4 Mama
GE'M =Q - M| Ron-n

cT T ma cT
G- =Pz, +My Ry
n+1)

and Egs. 5.9 and 5.12 have the same kinematic admissibility conditions.
The variational equations of motion can be reduced further by substituting 82,,("_,) and

(5.13)

Yon-1) in terms of 82(,,_,,,,, 39 (51> i'(n_m, and Gy, 1, employing Egs. 2.13 and 2.14. Equation
5.12 thus becomes

-1 e :

' - mmg, ma: 7 T pa@8My aa: @

EQM@)+ Y {8Z¢, (M™Y., +M™3-OP)+ Sa] (MP™Y,_ +M™3 QD)
i=/

AT . .
+ 8z(r)—1)n{(%(n-1 )Y(n-1 )n+G§(n—1 )n(n—1 nSn-1n
T
q c
RN - RN c R c Y

T T 2 - .
S T 4 PR (c VPRSI c A 2 SN

T
q c
+Grz1(n—1)e(n-1)n“q(n-1)+6n(n+1)n =0 (5.14)

which must hold for all virtual displacements that satisfy constraints inboard of body n-1.
Since the kinematic relationship for joint (n-1,n) has been substituted into the equations of
motion, Sq(n_nn is arbitrary; i.e., the coefficient of 8 n-1)n in EQ. 5.14 must be zero, which
gives ) ' ' ' '

T
C

. 2z - a
Ar-1n = Bi-nYin-1n + Rin-1n + Bipnn? (5.15)
where

z T 1.1
Rin-tn= "(n(n—ﬂnqz\(n-ﬂn(n-ﬂn) H(n—ﬂntv(n—ﬂ

a T -1 T q
R(n—1)n='(n(n-1)n("hz(n-1)n(n-1)n) 1-’(n-1)n(c;§(n—1)9n(n-1)"Gn(n—ﬂ) S e

U T =
c T -1..T c : :
Rir-1n = M- pnGro-nTkn-nn) Tin-1nGrin-1 (5.16)
where existence of (H{M)nG,f(n_1)H(n_,>n)'1 is proved in Ref. 11. Note that the subscripts of R*,

R? and R° in Eq. 5.16 are in ascending order which are different from Eq. 5.11.
Substituting the relative joint acceleration of Eg. 5.15 into Eq. 5.14,
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n-1

5T 5 - T g 2MS 23 3

EQM@)+ D {62, 1M q_¢yeM™5-O)+ 52 (M ™,y +M 8-GO}
m

. u
5T y c
+ 82 130Gt Vr-n—Ger-tn* G-kt = 0 (5.17)
where

G-t = Grnt) + G-t k- nFr-n

G'(qmnn n(n-1)-Gn(n-1)9(n-1)n Gn(n—1)n(n——1)nRa(n—1)n
G(n—1)n Gn(n-1)+Gf\(n-1)U<n-1)nR(n-1)n (5.18)

which must hold for all virtual displacements that satisfy the same kinematic admissibility
conditions as Eq. 5.14. Note that the subscripts of G*, GY, and G° in Eq. 5.18 are in ascending
order which are different from Eq. 5. 13.

By employing the recursive relationships between inboard and outboard joint frames
of Egs. 2.16 and 2.17, the variational equations of motion can be reduced to

n-2

EQM(2) + 2{52%-1)(Mimm?iﬁ-n’“M?méer)ﬂ“ a (M5 Vi) +M; "2, -G))}

i=/

.1 : .
+ 82, 102G Vir-1in-2*T -1+ A1)

T .
q c mmg, m ..
-G 1t Gin-1)nM Mot Yin-1yin-2+Mny an—1‘°§t—1 }

T T . -
+ 8801 Tl GnnVin- -2 T -1 +Am-)

T -
q (o am - a ’
T RRINT c A VI b FRIVAPLY Lt MR e ) ) (5.19)
which must hold for all virtual displacements that are consistent with tree structure
constraints inboard of joint (n-2,n-1). Since 8a__ must be arbitrary, the coefficient of

n-1
8a " must be zero, which yields

. T

.- z ky C

éin-1 = Rir-nin-2Yo-nn-2+Rin-1ie-2+Ria-1xn-22 . (5.20)
where

z aa T -1 T am
Rin-1)n-2) = ~Mp_4+T, (n—1)nc'(zn-1)nr(n—1)n) (r(n—1 )nG(Zn—1)n+Mn-1)
R (n—1 n-2y= _(M n-1 +I‘(n—1)nG(Zn-1 )nr(n—1 )n) {r(n—1)n(G(n—1 )nA(rH )n*G(n-1 )n)’Qn—1

R(n—1 2= ~ME2 4T oG ) (r(n—1)nQn—1)n) (5.21)

where existence of (M?,i,+I‘(Tn_,,n(3(zn_1)nl‘(n_1)n)_1 is proved in Ref. 11.
Substituting the modal acceleration of body n-1 from Eq. 5.20 into Eq. 5.19,
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n-2

EQM@) + 2{52;&-1)(”'{" ™Vigay M 8-GO+ a (M5 ™Vt MTE QD))
e/

. T
AT A C
+ 82 1302 G- 12 Y r-10-2- G102+ G- 1n-2A = 0 (5.22)
where

v 4 mm ma Z
Gir-1n-2 = G M HGo 1T v M) R 12
G?M)(n-z) G(n-1)n+Qrzm-(G(n-1)nr(n-1)n+|"'m)R(n-n(n-z)

G(n—1)(n—2) G(n—1)n+(G(zn—1)nr (n—1)n+Mn—1)R(n—1)(n—2) (5.23)

If the reduction procedure is continued to the junction body / for chains 1 and 2, the
following reduced variational equation of motions is obtained:.

' 62”—1){(G;M)*Gzlm)?ﬂ-ﬂ"'(eilﬂ)rl(m)+G:nrlm)5ﬁ(Gf(M)AKI+1)*GZImAIm)
-G )+G?nHG:L )+G§;)+M;“m¢,(,_1 M ar-Qf}
+ 88 {(T )Gt ﬁrznGin)ém ST c P MRS 3 Intmrlmf;/
TG0 18 0 TG AT )G 17+ Thr G+ T 1) G 1
r -;nG::)M'M?m.?KH)*M?E;I’d?} =0 (5.24)

Since da , is arbitrary, the modal acceleration of junction body / can be determined as
- z g a c
a,= Rigu)Yren + Ry + Rggd (5.25)
where
z aa T T AZ =1 .am T T Az
Ri1) = =M 4T 00 Gy T+ TGl i) (M3 ™+ 0GR+ TG
a aa T T A2 -1..T q
Ry = ~M 4T Gh ) iy TGl i) Ty (G 1817+ 1y)

T T T

T T -1 T T
RY1) = ~ M3+ TGy Ty TinGnlim) Tty Gt 1y TG (5.26)
Substituting the modal acceleration of the junction body from Eq. 5.25 into Eq. 5.24,

. T
AT ~
8Zxy-1( Gigy Vi) — Gty + GRepph) = 0 (5.27)

which must hold for all kinematic constraints acting on junction body /. Terms arising in Eq.

5.27 are as follows:
Gir-1) = Gy G+ M) G ) ey G M IRKLyy

Ggm)—(“/(m)+Hm)+°t+(37(m)r(m)+GmFm+Ml )970-1) 7
Gxt-1)-(Gm1)+Gm)+(Gm1)rxm>+Gmr M )RKH) (5.28)



6. Cut Joint Constraint Acceleration Equations

In addition to the equations of motion, cut joint constraints must be used to obtain the
same number of equations as unknown accelerations and multipliers. Cut joint constraints
may be differentiated twice to obtain the constraint acceleration equation,

s _ gl o T 3
4 = ZMM)Yn(nﬂ) + QZ(M)nY(nH)n -y=10 (6.1)

where v is the collection of all terms that do not include \?,mn and ?(M)n. Superscript
(n,n+1), which has been used to denote the cut constraint between bodies n and n+1, is

omitted for notational convenience in the derivation. Accelerations ?,,(M)and Q(M)n from Eq.
2.17 are substituted into Eq. 6.1, to yield

T % .
D32 o Y- T i )80+ Anine)

T ; ,
+ 0z, Voo omoB T ne2) - 1= 0 (6.2)

Substituting a, from Eq. 5.10 and a,,,,, obtained by advancing subscripts in Eg. 5.10, into Eq.
6.2 yields

: c - T T
Grn-tn¥n1) + G2 Yo + Lnin-nline e

- Non-1 - Ne s =¥= 0 (6.3)
where
Jo—ol TR
-1 = @z, T 1)Prin)
T
Nop-n = -0z ... Bt )+rn(m1)F¢(n—1)) (6.4)

and L, yn.2) @81d N, 4)n.2) @re obtained by substituting appropriate subscripts into Eq. 6.4.

The recursive relationship between triple primed frames of joints (n-1,n) and
(n+2,n+1), obtained from Eq. 2.16, are next substituted into Eq. 6.3, to give

G Y- - 008D O - e Y s 2 15 i 2doe )8 2 1)

T T
8 2 i1y e X2 M N 1y-Nis i1 = 0 (6.5)

If the relative joint accelerations §;, qy, from Eq. 5.15 and G,o5.1). Obtained by replacing
subscripts of Eq. 5.15, are substituted into Eq. 6.5,

: , : T T
G-t Yor-t* G2 Yoy - nt s e A Nin-n Newamrd =0 (6.6)
where
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c a
Ni-1n =N + Gn(m1)(e(m1m+um1 nRo-1n)

Lir-tn = Ln(n—1)+Gn(n—1)n(n—1)nR(n—1)n (6.7)
and L, .1y @nd Ny 50,4, @re obtained by replacing (n-1,n) by (n+2,n+1) in Eq. 6.7.

If this sequence of elimination of modal and relative joint accelerations is repeated to
junction body /, the following reduced constraint acceleration equations are obtained as

. T
Gy Yary + Lgeph~ Ny -¥= 0 (6.8)
where '

.
T T T
L1y = CrayrLm) + Gy Gl iRy

N/(/-n = (NN - (Gm1)rr(;n)+G/rnrm)R/(/-1) = Grande*Gmdn)  (6.9)
7. Base Body Equation of Motion

A single closed loop subsystem is used to denverdecoupled recursive equations of
motion in Sections 5 and 6. The variational equations of motion were reduced to the inboard

joint reference frame of the junction body. Since the base body does not have an inboard joint,

the inboard joint reference frame of the base body is assumed to coincide with the base body
reference frame. If the reduction procedures that have been carried out with this subsystem
are repeated along all chains of a system to the base body, the base body equation of motion is
obtained as

~T - J ] - el
8Zb(C€wa‘c;§b+G§b” =0 (7.1)

where 82b is arbitrary for a floating base body, which yields

- CT A R . .
Go Yo Gy Goph = 0 o (7.2)

Reduction of cut joint constraint acceleration equations to the base body yields the
reduced constraint acceleration equations as

T -
( Iy T :
GoYotLophNyp, = 0 (7.3)
Equation 7.2 may be combined with Eq. 7.3, to form the augmented base body equations of
motion,

- . )
Gy, Gfb Pololeh
G‘ob bb 7~ Nop (7.4)

In the case of a constrained base body, a Lagrange multiplier vector A° and
corresponding constraint accelerations are introduced into Eq. 7.4. The resulting augmented
equation of motion is
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i T T

G G 3 [ g
Vol |%

G Lu

o o o [A°] Ly

L Zw I (7.5)

where ®° is constraint equations acting on the base body and + is the collection of all terms

0 ),_Nbb

b . b
that do not include Y, in @,

Equation 7.4 or 7.5 is solved for the base body state acceleration vector and the
Lagrange multiplier vector. Detailed computational algorithm is presented in Ref. 11,

8. Example Problem

A closed loop spatial robot that consists of two flexible and three rigid bodies is shown
in Fig. 5. Bodies 3 and 5 are flexible beams with rectangular cross sections. All other bodies
are treated as rigid bodies. Body 1 is connected with ground, which is designated as the base
body, by a revolute joint. A lumped mass is attached to body 3 at point P to represent a
payload for this robot. Joints 1, 2, 3, 4, and 5 are revolute joints. The connection between
bodies 3 and 5 is a spherical joint (joint 6).

One generalized coordinate is assigned for each revolute joint, and three deformation
modes have been chosen for each flexible. Joint 6 is defined as the cut joint to form a tree
structure.

Inertial properties and geometric data are given in Table 1. For deformation mode
computation, flexible beams are discretized in to 10 equal length 3 diemensional beam
elements.

Simulation is carried out for 0.5 sec., with the following actuator torques applied at
joints 1, 2, and 4, respectively:

n, = 5.0E9-sin(0.2xt)

n, = 9.0E7 - 8.0E7-t

n, = 8.5E9 - 3.0E9t (8.1)
Results of the simulation have been verified using the three dimensional dynamic analysis
program DADS [18], which employes a Cartesian coordinate formulation [13]. In the
Cartesian coordinate formulation, 48 generalized coordinates and 40 constraint equations are
needed to represent the system. However, only 11 generalized coordinates and 3 constraint
equations are required for the recursive formulation presented here. The y coordinate,
velocity, and acceleration of the origin of the body reference frame for body 3 are shown in
Fig. 6. Both the DADS and recursive formulations yield the same results when implemented on
a VAX 11/780 serial computer, which cannot exploit parallelism in the recursive algorithm.
Table 2 shows the CPU time required for both methods and the ratio of CPU time between the
two methods. '
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Figure 1. A Reference Frame
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Figure 3. A Closed Loop Subsystem
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Table 2. CPU Comparison

CPU

DADS

Recursive Method

Ratio

8450 sec.

762 sec.

11.09

Table 2. CPU Comparison
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